Zum Hauptinhalt springen

Internship / Masters Thesis - Inverse Reinforcement Learning for Vehicle Functions (m/f/d)

Vorlesen: Jobbeschreibung*
Die Audioerstellung für lange Beschreibungen kann 30 bis 60 Sekunden dauern.
* Erstellt mit künstlicher Intelligenz
71297 Mönsheim
Home Office, Vollzeit, Praktikum / Werkstudent:in

Veröffentlicht am 17.02.2026

Jetzt Job teilen


Bewerbungen von Menschen mit Behinderungen oder chronischen Erkrankungen ausdrücklich erwünscht!

Unternehmen, die mit myAbility.jobs zusammen arbeiten sind von den Fähigkeiten von Menschen mit Behinderungen überzeugt.

Automatisch Jobs im Posteingang finden?Jetzt Jobs per E-Mail erhalten!

Internship / Masters Thesis - Inverse Reinforcement Learning for Vehicle Functions (m/f/d)

Illustration: Ein Haus mit einem Laptop im Inneren.
Home Office
Illustration: Drei Personen, die von zwei offenen Händen umgeben sind.
Diversity-Statement
Illustration: Ein Steuerknüppel auf rechteckigem Sockel.
Arbeitsplatz-Anpassungen möglich
Überblick
Erstellt mit künstlicher Intelligenz

We are CARIAD, the automotive software company of the Volkswagen Group. Our teams build automotive software platforms and digital customer functions for iconic brands like Audi, Volkswagen, and Porsche - supporting the Volkswagen Group in becoming the leading automotive technology company. With CARIDIANS in Germany, the USA, China, Estonia, and India, we are transforming automotive mobility for everyone.

Join us and be part of this exciting journey!

YOUR TEAM
For the department Vehicle, Energy, Motion & Body (VEMB) we are looking for a student (intern or master thesis) for the project "Learning Intelligent Onboard Functions". Our department develops advanced software for vehicle energy, motion, and body systems. Our VEMB pre-development team works on methods for end-to-end learning of VEMB functions to enable faster, scalable and more cost-effective product development. We cover the entire development range, from initial concepts to proof of concepts in test vehicles. Thereby, we work in close cooperation with the series development departments.

WHAT YOU WILL DO

  • Collaborate closely withthePhD candidatesto addressthekey challenges in Reinforcement Learning, with a focus on VEMB functions
  • Review the state of the art in Inverse Reinforcement Learning
  • Select, implement, and adapt a suitable IRL method to infer reward functions from expert demonstrations
  • Design and execute experiments (e.g., baselines, ablations, robustness checks) to evaluate performance and transferability
  • Apply the learned reward models to downstream reinforcement learning tasks
  • Document and communicate results. Publication of research results is desired
  • Collaborate with teams in pre-development and series development


WHO YOU ARE

  • Enrolled studentinthearelevant field:Computer Science,Robotics, Electrical Engineering, Mechanical Engineering,etc.
  • Solid background in control theory, Reinforcement Learning, or imitation learning
  • Interest or prior experience in Inverse Reinforcement Learning, learning from demonstrations, or reward learning
  • Experience in Python and with machine learning frameworks such as PyTorch, Jax, etc.
  • Hands-on experience through real-world projects, such as student projects, internships, or prior work experience
  • Strong analytical and problem-solving skills
  • High level of commitment, initiative, and teamwork
  • Fluency in English and German and good communication skills


NICE TO KNOW

  • Remote work options within Germany
  • Duration: 6 months
  • 35-hour week
  • Salary: 13,90 €/hour


At CARIAD, we embrace individuality and diversity because we believe our differences make us stronger. We actively seek to build teams with a variety of backgrounds, perspectives, and experiences. Our goal is to create an environment where everyone feels valued and empowered to contribute. If you need assistance with your application due to a disability, please reach out to us at careers@cariad.technology - we are happy to support you.

Automatisch Jobs im Posteingang finden?Jetzt Jobs per E-Mail erhalten!